
Supplementary Material

This document is the supplementary material for the paper Data Player: Automatic Generation of
Data Videos with Narration-Animation Interplay. It provides details about constraint encoding and
the Z3 CSP solver to generate animations.

1 Z3 CSP Solver

To generate the animation sequence, Data Player assigns concrete values to specific variables and
leverages the CSP solver to explore numerous combination alternatives in the large search space.
Specifically, we encode high-level design knowledge summarized from the formative study and existing
literature as computational low-level constraints. All constraints are formalized as equations and fed
into the Z3 CSP solver. The solver outputs suitable animations. The following section will explain
the low-level constraint encoding in detail.

1.1 Hard and soft constraints

In the Z3 CSP solver, hard constraints form the absolute conditions any solution must meet, while
soft constraints are ideal but not mandatory. A solution remains valid even when it violates a soft
constraint. During our design process, we realized that some constraints needed to be soft, as we
may violate them to fulfil hard constraints. However, using the standard soft constraints feature of
the CSP solver led to issues as it uniformly treats all soft constraints, and restricted our ability to
selectively relax certain constraints.

ϕhard(echo)
hard
= must satisfy (1.1)

ϕsoft(echo)
soft
= not mandatory to satisfy (1.2)

To overcome this, we implemented our own version of soft constraints. We created additional Boolean
variables p for each soft constraint and added an implication Implies(p, constraint) to the solver.
If a particular model fails to satisfy the entire problem (i.e., the problem is unset), we can potentially
use the function unsat-core to determine which of the soft constraints caused the problem. Data
player will then discard these problematic constraints and reattempt the solution. Meanwhile, this
design feature allows the frontend to display the unsatisfied constraints to the user and lets them
decide which to omit.

2 Basic visual Design Quality

2.1 Linking

First, to ensure basic visual design quality, we use the established text-visual links to generate visual
structure and data facts constraints, matching textual and visual entities and grouping semantic-
related visual elements. For each linked echo, we get the variables echo.time, echo.elements from
the text-visual linking. To represent a potential animation at the echoed time, we create a new
animation instance for the echoed element and encodes the linking constraint to set the start time
of this potential animation be the echo.time. linking constraint is the only constraint that creates
new animation instances for the elements, thus it exclusively allows the visual elements linked to
specific narration segments to be animated.

1

ϕlinking(echo)
hard
=

∧
e∈echo.elements

e.animation.start time = echo.time (1.3)

2.2 Integrity

For the intergrity constraints, Data Player defines two intermediate variables: animation.activate
and element.num activate. activate determines if the potential animation will be used or not, and
num activate is the number of activated animations for the element. Together, the num activate

constraint tracks the number of activated animations for each element.

ϕnum activate(E,Ae)
hard
=

∧
e∈E

e.num activate =
∑
a∈Ae

{
1 if a.activate = true

0 if a.activate = false
(1.4)

Then, Data Player encodes integrity constraints to ensure that all elements involved in text-visual
links are animated, i.e. for each element, at least one animation is activated. For the annotation
elements, the integrity constraint is the hard constraint, while for other types of elements, Data
Player encodes the integrity constraint as “soft”, which means if it violates other hard constraints
such as time conflict, this element will not be animated. Without any animation, the element will be
always on the canvas.

ϕforce use(E,Ae)

{
hard
=

∧
e∈E e.num activate ≥ 1 if e.type == ”annotation”

soft
=

∧
e∈E e.num activate ≥ 1 otherwise

(1.5)

2.3 Group

We design group constraints to group the visual elements that are related to data facts in the text-
visual links. Meanwhile, we design the association constraints to ensure that if one element is
linked to narration, itself and other elements in the same data group can be animated. In addition,
our consistency constraints specify that elements from different groups that are visually consistent
should apply the same animation.

3 Temporal Constraints

Second, we encode sets of temporal constraints to time-align animations and narration. Each group
of constraints specifies how different elements of the data video should be timed and arranged on
the timeline according to their type, effect, and relation to the narration. Narration text inherently
contains a chronological relationship between words. We automatically generate audio narration with
Microsoft Azure Text-to-Speech services and obtain the timestamps of each word in the audio, which
also acts as the timeline to arrange animation effects applied to the visual elements.

3.1 Duration

Data Player encodes constraints to determine that the animation effects are triggered by the onset of
the first word in each linked narration segment, and last for the duration of the corresponding text
span in the audio in default. default duration constraint calculates this default duration with the
first word.time and last word.time from the linked narration.

ϕdefault duration(E,Ae)
hard
=

∧
a∈Ae

a.default duration = last word.time− first word.time (1.6)

Meanwhile, for the same element, the animations should not have a time conflict. Therefore, the
duration is also constrained by the next activated animation’s start time. We define a dictionary of
variables Dnext to calculate and store the start time of the next animation. The next start constraint
chains the start time of the next animation along the timeline.

ϕnext start(Ae)
hard
=

∧
prea,cura∈Ae

{
Dnext[prea.time] == prea.time if pre a.activate == true

Dnext[prea.time] == Dnext[cura.time] otherwise
(1.7)

2

With the time for the upcoming animation from Dnext, we can now incorporate the duration con-
straint to control the duration of each animation. The exception here is the emphasis animations,
which can be concurrently activated with other animations - for instance, zooming in as a bar expands.

ϕduration(Ae)
hard
=

∧
a∈Ae

{
a.duration ≤ min(Dnext[a.start time]− a.start time, default duration) if a.type != “emphasis”

a.duration ≤ default duration otherwise

(1.8)

3.2 Conflict

Another important set of temporal constraints enforces the inherent logical order of animation actions.
Firstly, for each element, we track and store the type variable to determine the type/effect of anima-
tion along the timeline. This on-screen status enables conflict and overlap constraints explained
in the following sections.

Specifically, we specify three animation actions: “enter” animations are applied when an object ap-
pears on the screen, “exit” animations are applied when an object disappears from the canvas, and
“emphasis” animations are applied to draw attention to an object that is already on the canvas. The
three status is encoded in Z3 in the form of two variables ”enter” and ”exit”.

a.type =


ENTER (not on canvas→on canvas) enter=true, exit=false

EXIT (on canvas→not on canvas) enter=false, exit=true

EMPHASIS1 (not on canvas→not on canvas) enter=false, exit=false

EMPHASIS2 (on canvas→on canvas) enter=true, exit=true

(1.9)

Note that there are two types of emphasis. The first type of emphasis applies to the elements that
exist on the canvas, such as bumping the text and highlighting the bar. The second type applies to
the elements not on the canvas before the animation. One common usage is showing an annotation
circles the number when it is mentioned. The type variable helps us to determine the conflict due
to the animation actions along the timeline. For example, visual elements can only be emphasized or
disappeared after they appear, and elements cannot be emphasized after they disappear.

With the type variables, we encode on screen variables and constraints to determine when an element
appears or disappears. If on screen is true at time t, then the corresponding element is visible at that
time. Otherwise, it is hidden. With the conflict constraint, we create a table T (t) = on screen that
calculates which elements are on the canvas at any given moment. The conflict constraint consists
of 4 conditions to follow:

• If the ENTER or EMPHASIS2 state is applied to the element at time t ∈ T(t), then the element
will be on the canvas until the next animation is applied.

• If the EXIT or EMPHASIS1 state is applied to the element at time t ∈ T(t), then the element
will be removed from the canvas until the next animation is applied.

• For any time t ∈ T(t), if one element is on the canvas, the ENTER and EMPHASIS1 state
cannot be applied.

• For any time t ∈ T(t), if one element is not on the canvas, the EXIT and EMPHASIS2 state
cannot be applied.

These four conditions are applied to all the animations of the element. We achieve this by iterating
the animations in the order of time in pairs. The pseudo-code in Algorithm 1 below implements the
constraints, where the table T(t) controls the animation actions to avoid conflicting movements. It
also helps us to avoid overlapping between elements.

3.3 Other temperoal constraints

Temporal constraint earliest time calculates the earliest time each element can choose.

ϕearliest time(E,Ae)
hard
=

∧
e∈E

e.earliest time = min
a∈Ae and a.activate is true

(a.start time) (1.10)

3

Algorithm 1 OnScreenConstraints

1: procedure OnScreenConstraints
2: ▷ At time 0, the element is not on screen.
3: z3.addConstraint(¬T [0])
4: ▷ If animation is activated at time 0, it enters the canvas.
5: z3.addConstraint(Implies(T.animations[0].activate, T.animations[0].enter))
6: for cur time, pre time, cur ani, pre ani in T, T.animations do
7: condition1← z3.Implies(pre ani.activate,Xor(pre ani.exit, T [cur time]))
8: condition2← z3.Implies(¬pre ani.activate, T [cur time] == T [pre time])
9: ▷ If the last activate animation exits, the element is not on the screen, and vice versa.

10: z3.addConstraint(And(condition1, condition2))
11: ▷ If the current element is on screen, then the animation cannot be entered, and vice versa.
12: z3.addConstraint(Implies(cur ani.activate,Xor(T [cur time], cur ani.enter))
13: end for
14: end procedure

Every element (except annotation) default to have one animation at the earliest mentioned time. The
defalut animation constraints will mark the specific animation to be activated if it is at the earliest
time that the element is available.

ϕdefault animation(E,Ae)
soft
=

∧
e∈E,e.type̸=”annotation”

∀a ∈ Ae, a.start time = e.earliest time =⇒ a.activate

(1.11)

4 Order

Data player also encodes a set of order constraints that define an optional logical sequence of elements.

4.1 Optimized Elements Order Constraints

If we directly encode the constraints pairwise into the z3, there will be O(n2) constraints, where n is
the number of elements.

ϕorder(G1 < G2)
hard
= ∀e1 ∈ G1, e2 ∈ G2, e1.start time ≤ e2.start time (1.12)

To optimize the time complexity, we encode the constraints as follows:

ϕorder(G1 < G2)
hard
=

{
∀e1 ∈ G1, e1.start time ≤ intermediate

∀e2 ∈ G2, intermediate ≤ e2.start time
(1.13)

with the intermediate variable, the number of constraints is optimized to be linear.

4.2 Order by Element Type

With the order constraint, we can define constraints that force the order between any two groups of
elements. For example, in a bar chart, the axes need to enter before the bar shows. Such require-
ments are formed into the following constraints: The element order constraint forces the elements
in different data groups to follow the order: background →title→axis →[data-item | annotation].

ϕelement order(E,Ae)
hard
=


ϕorder(Gbackground < Gtitle)

ϕorder(Gtitle < Gaxis)

ϕorder(Gaxis < Gdata−item)

ϕorder(Gaxis < Gannotation)

(1.14)

4.3 Synchronization

To ensure that elements in the same data group activate together, we define synchronization con-
straints as a soft constraint.

ϕsynchronization(G)
soft
= ∀e1 ∈ G, e1.start time == intermediate (1.15)

4

5 Overlap

Elements on the canvas may overlap. However, these overlapping elements do not necessarily lead
to conflicts, provided they are not simultaneously visible on the screen. As mentioned in the section
conflict, the on screen table T (t) can be used to track the overlapping conflict at any time along the
timeline. We first define is overlap constraint to check if all the elements in the group overlap.

ϕis overlap(E)
hard
=

∧
e1,e2∈E


e1.bbox.max x < e2.bbox.min x

e1.bbox.min x > e2.bbox.max x

e1.bbox.max y < e2.bbox.min y

e1.bbox.min y > e2.bbox.max y

(1.16)

Secondly, for each time t along a timeline, we check all the on-screen elements to ensure they don’t
overlap.

ϕoverlap(T)
hard
=

∧
t∈T

(ϕis overlap(|e, e.T [t] == true|) == false) (1.17)

6 Animation effect

We utilize a small set of pre-designed animation effects based on the GSAP animation platform for
different actions as a technology probe and proof-of-concept to explore our main research concern.
The animations cover common chart types (e.g., pie chart, bar chart, line chart, and scatterplot),
and can be divided into three behavior types: Enter, Exit, and Emphasis. Each animation preset
incorporates controls of multiple visual elements. For instance, in a pie chart, the sector and its
corresponding legend elements (e.g., symbol and label) are usually bound into a group. So we define a
new animation called “pie-wheel-and-legend-fly-in”, which means that the pie chart’s sector will wheel
clockwise and the legend-related elements will fly in at the same time. As a result, we can apply only
one animation to multiple elements, avoiding specifying animations for each element individually.
Each animation contains multiple predefined sub-animations for a set of visual components. Define
that animation is designed for the visual components V := Vh∪Vs, where Vh is the element set of hard
constraints and Vs is the element set of soft constraints (marked []). Vc is the set of selected elements
in the text-visual link. For each animation in the library, only if Vs ⊆ Vc ⊆ V , it can be applied.
On this basis, we define an objective function to minimize the number of animations used: min

∑m
i=1Ai,

where Ai is the number of animations applied to the i-th text-visual link and m is the number of text-
visual links. This function ensures that the module uses our predefined animation combinations as
much as possible to maintain narrative coherence.

5

